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Population dynamics of interacting spiking neurons
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A dynamical equation is derived for the spike emission raten(t) of a homogeneous network of integrate-
and-fire~IF! neurons in a mean-field theoretical framework, where the activity of the single cell depends both
on the mean afferent current~the ‘‘field’’ ! and on its fluctuations. Finite-size effects are taken into account, by
a stochastic extension of the dynamical equation for then; their effect on the collective activity is studied in
detail. Conditions for the local stability of the collective activity are shown to be naturally and simply ex-
pressed in terms of~the slope of! the single neuron, static, current-to-rate transfer function. In the framework
of the local analysis, we studied the spectral properties of the time-dependent collective activity of the finite
network in an asynchronous state; finite-size fluctuations act as an ongoing self-stimulation, which probes the
spectral structure of the system on a wide frequency range. The power spectrum ofn exhibits modes ranging
from very high frequency~depending on spike transmission delays!, which are responsible for instability, to
oscillations at a few Hz, direct expression of the diffusion process describing the population dynamics. The
latter ‘‘diffusion’’ slow modes do not contribute to the stability conditions. Their characteristic times govern the
transient response of the network; these reaction times also exhibit a simple dependence on the slope of the
neuron transfer function. We speculate on the possible relevance of our results for the change in the charac-
teristic response time of a neural population during the learning process which shapes the synaptic couplings,
thereby affecting the slope of the transfer function. There is remarkable agreement of the theoretical predictions
with simulations of a network of IF neurons with a constant leakage term for the membrane potential.

DOI: 10.1103/PhysRevE.66.051917 PACS number~s!: 87.10.1e, 05.90.1m, 05.40.2a, 87.19.La
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I. INTRODUCTION

The mean-field approach to the analysis of recurrent
works of spiking neurons dates back to the early 1970s
put our work in perspective, we list a few relevant mileston
in this successful history, relevant to the subject of
present paper@1#: One early, seminal work was devoted
the characterization of the frequency response of a hom
neous population of noninteracting integrate-and-fire~IF!
neurons in stationary conditions@2#. In Ref. @3#, a wider
repertoire of dynamical behaviors emerges from anad hoc
dynamics introduced for the collective activity of interactin
populations of neurons. Building on a well-establish
knowledge of the stochastic dynamics of a single noi
driven IF neuron, the authors of Ref.@4# could formulate a
static mean-field approach taking into account the fluctua
in the external afferent currents in a network context, th
opening the way to the theoretical description of low activ
states of interacting IF neurons with high interspike variab
ity. In a tour de force the author of Ref.@5# made an exten-
sive analysis of the mean-field dynamics of populations
interacting IF neurons, incorporating dynamical synaptic c
rents and adaptation effects~via voltage-independent potas
sium currents!; fluctuations in the afferent currents were n
taken into account in Ref.@5#. A complementary analysis wa
performed in Ref.@6#, not including adaptation effects, i
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which the local stability conditions were derived for a hom
geneous population of IF neurons, also incorporating the
fects of a noisy afferent current~independent of the network
activity! through a Fokker-Planck formulation. Using an a
ternative neuron model~the ‘‘spike-response’’ neuron!, an-
other approach was built in Ref.@7# to the mean-field dynam
ics, via the construction of suitable kernels propagating
time the collective activity of a neural population. The theo
could accommodate dynamical synaptic currents. The ef
of an absolute and/or relative refractory period, fluctuat
emission threshold, and a complex dynamical scenario,
cluding asynchronous states and phase locking, was cha
terized. The mean-field approach was further enriched
Ref. @8#, taking into account the fluctuations in the affere
currents self-consistently determined by the network rec
rent activity, including excitatory and inhibitory interactin
populations and the effects of a Hebbian synaptic structur
way to incorporate the finite size of the network as a corr
tion to the mean-field formulation was explored in Ref.@9#; a
‘‘phase diagram’’ was derived in this work for an inhibitor
network, and the line of bifurcation from stable asynchr
nous states to high-frequency oscillatory states was ca
lated by means of a perturbative treatment of a Fokk
Planck formulation. A spectral analysis was performed
Ref. @10# of the collective activity of a single population o
~excitatory or inhibitory! neurons of the ‘‘spike-response
type, taking into account the finite size of the network in
way similar to Ref.@9#, but without considering noisy cur
rents.

With somewhat different motivations, an approach w
©2002 The American Physical Society17-1
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proposed in Ref.@11# to the numerical solution of the abov
Fokker-Planck formulation of the network dynamics, whi
involves expanding the Fokker-Planck operator onto a tim
dependent basis.

Motivated by a dynamical description of the mean-fie
theory, we use a similar formalism which, complemented
the appropriate ‘‘self-consistency’’ ingredients, allows us
formulate in closed form dynamical equations for the fra
tion of neurons spiking per unit timen(t) ~the ‘‘collective
activity’’ or ‘‘emission rate’’ of the neural population in the
following! in the presence of noise.

With this approach, we could reproduce in a unified fra
several key results of the works quoted above, but new qu
tative and quantitative features also emerge.~i! From an ap-
proximate solution of the dynamical equations forn, a pecu-
liar role emerges for the single neuron response proper
this, in our view, is a step forward in the long-standing pro
lem of relating single neuron properties to the collective
tivity of interacting assemblies of neurons@2,5,6,8,7#. ~ii !
Taking in due consideration the fact that neurons only co
municate with each other via spikes led us to reformulate
way in which finite-size noise enters the Fokker-Planck
scription of the collective dynamics; this generates additio
features in the spectral content of the collective activity, w
respect to those already observed in Refs.@10,9#. ~iii ! Our
formalism encompasses in a natural way the description
neural populations operating in anoise-dominated~sub-
threshold! regime, recognized to be relevant for the descr
tion of neural activity characterized by low emission ra
and high variability in the interspike intervals@8,12,13#. We
show that a characteristic low-frequency behavior of
population frequency response, and a peculiar hierarch
characteristic times of the population transient respon
emerge.~iv! With a focus on the asynchronous collecti
states~which are widely recognized as representative of ty
cal cortical conditions!, it turns out that the response times
the neural population to sharp variations in the input, besi
being strongly affected by noise, are remarkably sensitiv
the intensity of the average synaptic couplings. This fo
shadows a link between the latency of the response
stimulus and a ‘‘learning’’ process having taken place in
network. The asynchronous states provide a natural, fas
hicle to propagate the information flow, as previously su
gested in various contexts@2,5,14,15# ~see also@16# for an
experimental estimate of the speed of processing in the
sual cortex!.

In the first part of the paper, after briefly reviewing th
‘‘population density approach,’’ we illustrate the general fo
malism that allows us to write a dynamical equation for t
collective activity of a population of generic IF neurons.
linearized analysis follows, which allows us to study the
cal stability for the asynchronous states and the character
times of the transient network response. We then turn to
analysis of the finite-size effects and the power spectral d
sity of the network activity. In the second part we turn to
specific example application of the general theory, study
the mean-field dynamics of a network of IF neurons w
constant leakage term~the ‘‘linear’’ neuron studied in Ref.
@12#!, and a detailed comparison is performed between
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theoretical predictions and numerical simulations.

II. A GENERAL APPROACH

A. Single neuron equation

A generic integrate-and-fire~IF! neuron can be fully de-
scribed by the following dynamics of its membrane poten
V(t) ~depolarization!:

V̇5 f ~V!1I ~V,t !/C, ~2.1!

wheref (V) is the deterministic drift towards a resting pote
tial @ f (V)52V/t, leaky IF neuron;f (V)52b, constant
leakage, linear IF neuron~LIF! @12##, C is an effective cell
membrane capacitance, andI (V,t) is the ionic current due to
incoming spikes from the presynaptic neurons through
dendritic contacts, and can be adequately modeled, for a
alistic number of presynaptic afferents~connectivity!, as a
superposition of stochastic, independent point proces
WhenV(t) crosses a thresholdu, the neuron emits an actio
potential~the spike! with an infinitesimal time duration, and
the depolarization is instantaneously reset to a valueH.

Under reasonable assumptions, including the diffusion
proximation, the limit of a large number of afferents, and t
independence between the activities of the presynaptic c
~see the detailed discussion in Ref.@17#!, the afferent current
I (V,t) is well described by a~possibly nonstationary!
Wiener process and the dynamics of the neuron’s memb
potential is governed by the following nonlinear Langev
equation:

V̇5h~V,t !1s~V,t !G~ t !, ~2.2!

where h(V,t) is the total deterministic drift@sum of f (V)
and the average afferent current m(V,t)
5^I (V,t)/C&]; s(V,t)5A^@ I (V,t)/C2m(V,t)#2&, the
size of current fluctuation, i.e., the variance of the affer
current.G(t) is a d-correlated~white! noise with zero mean
and unitary variance.̂ & above denotes averaging with re
spect to the probability distribution of the process at timet.

The emission of a spike and the limits on the access
values for the depolarization can be taken into account
suitable boundary conditions for the stochastic differen
equation~2.2!, as we discuss later in more details.

B. The dynamics of a single neural population

For a large homogeneous network ofN interacting IF neu-
rons, the mean-field approximation@8# assumes the same st
tistical propertiesm ands2 for the afferent currents to theN
cells. TheN depolarizationsV are considered asN indepen-
dent realizations of the stochastic process~2.2!, whose prop-
erties are described by a~time-dependent! probability density
function ~p.d.f.! p(v,t) @18#. The above independence a
sumption~to be checkeda posteriori! allows us to use the
percentage of neurons havingV(t)P@v,v1dv# as an esti-
mate ofp(v,t)dv. The evolution ofp(v,t) is described by
the following Fokker-Planck equation:

] tp~v,t !5Lp~v,t !, ~2.3!
7-2
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where L is the differential Fokker-Planck operator, whic
takes the general form

L~v,t !52]vA~v,t !1]v
2B~v,t !. ~2.4!

The A(v,t) term is the drift coefficient andB(v,t) is the
diffusion coefficient of the stochastic processV(t). Equation
~2.3!, with its boundary conditions, fully describes the pop
lation dynamics. TheA and B coefficients can be derive
from Eq. ~2.2! and are

A~v,t !5 f ~v !1m~v,t !5h~v,t !,

B~v,t !5 1
2 s2~v,t !

~see Refs.@19,20#!.
Equation~2.3! can be regarded as acontinuity equation

] tp~v,t !52]vSp~v,t !,

whereSp(v,t) is the net flux of realizations~or ‘‘probability
current’’! crossing the levelv at time t. Its explicit form is

Sp~v,t !5@A~v,t !2]vB~v,t !#p~v,t !.

The depolarization is assumed to vary betweenvmin and u,
including the possibility thatvmin→2`.

In particular, the fraction of realizations per unit tim
crossing the thresholdu, i.e., the average neuron emissio
raten(t) in the population, is given by the flux

n~ t ![Sp~u,t !.

u acts as anabsorbing barrier, such that

p~u,t !50, ~2.5!

and the emission rate becomes

n~ t !52B~v,t !]vp~v,t !uv5u52 1
2 s2~v,t !]vp~v,t !uv5u .

~2.6!

An equivalent, operational definition of the population ra
for a finite numberN of neurons is

n~ t !5 lim
Dt→0

N~ t,t1Dt !

NDt
,

whereN(t,t1Dt) is the total number of spikes emitted b
the population in the time interval (t,t1Dt).

Realizations crossing the threshold restart their rand
walk from v5H, after a refractory period of inactivityt0,
and this implies the following conservation of the net fl
Sp(v,t):

Sp~u,t2t0!5Sp~H1,t !2Sp~H2,t !, ~2.7!

whereSp(H6,t)5 limv→H6Sp(v,t).
A reflecting barrierpreventsV from going belowvmin ,

and this implies a vanishing probability current throu
vmin ,

Sp~vmin ,t !50. ~2.8!
05191
-
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In the mean-field approach, the infinitesimal moments
the afferent current are expressed as functions ofn(t) @8,12#,
now interpreted as the emission rate of presynaptic neur

m~v,t !5m@v,n~ t !#,

s2~v,t !5s2@v,n~ t !#.

Closing this loop makes the Fokker-Planck equation~2.3!
nonlinear, because the infinitesimal moments depend on
emission raten(t) and therefore on the system state, so t
L5L(p).

We also mention that a population density approach
viable also when the diffusion approximation is not va
~see@21#!.

C. Eigenfunction analysis

The Fokker-Planck operator~2.4! has a set of eigenfunc
tions and associated eigenvalues,

Lufn&5ln~ t !ufn&. ~2.9!

Defining the inner product

^cuf&5E c~v,t !f~v,t !dv,

the adjoint operatorL1,

^cuLf&5^L1cuf&, ~2.10!

has eigenfunctionsucm& and eigenvaluesl̃m that are in gen-
eral different from those ofL, becauseL is not Hermitian. In
the above expressions, the time dependence is implicitly
to the time dependence ofm and s2. The boundary condi-
tions for c and the expression forL1 can be derived from
the boundary conditions for thef @19,11#.

Assuming fn is a complete set of eigenfunctions, th
boundary conditions~2.5!, ~2.7!, and~2.8! must be satisfied
by eachfn(v,t).

The following conditions on the eigenfunctionscn of L1

result:

cn~u,t !Sfn
~u,t !5cn~H,t !Sfn

~u,t2t0!,

]vcn~vmin ,t !50,

]vcn~H1,t !5]vcn~H2,t !,

assumingcn andfn to be continuous functions in the inte
val (vmin ,u).

The adjoint operator is then given by

L1~v,t !5A~v,t !]v1B~v,t !]v
2

5@ f ~v !1m~v,t !#]v1 1
2 s2~v,t !]v

2 , ~2.11!

which is the evolution operator for the backward Kolmo
orov equation, completely equivalent to Eq.~2.3!.
7-3
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Equation~2.10! implies that eigenfunctions with differen
eigenvalues are orthogonal; for the completeness assum
of the eigenfunctions of the Fokker-Planck operator,

I5(
n

ufn&^cnu, ~2.12!

both L and L1 have the same eigenvalues (lm5l̃m), and
with an appropriate normalization the two sets of eigenfu
tions are biorthonormal,

^cnufm&5dnm . ~2.13!

For simplicity, we will neglect the refractory periodt0 in
the following, consideringt050 as a good approximatio
for not too high spike emission rates (n!1/t0.500 Hz).

1. Some remarks on eigenvalues and eigenfunctions

We list below some general properties of the eigenval
and eigenfunctions ofL which will be instrumental in the
following; we will sometimes use the case of noninteract
neurons as an easy reference situation for illustrative p
poses, although the statements in this subsection apply to
general, interacting case.

l050 is always an eigenvalue ofL, and the correspond
ing eigenfunctionf0 is the stationary solution of the popu
lation dynamics:] tf050.

The eigenvalues are in general complex, with Reln
<0, ; n5” 0, @22#; the latter condition can be inferred from
the fact that, for an ensemble of noninteracting neurons,
solution of the Fokker-Planck equation is directly related
the eigenvalues ofL, and is expected to converge tof0,
instead of exploding, which would be the case for posit
eigenvalues~see also Sec. II D 1!.

If ln is an eigenvalue, alsoln* is an eigenvalue, with
eigenfunctionufn* & (^cn* u), becauseL(L1) is real. We set
l2n5ln* and consequentlyuf2n&5ufn* &, so that the sums
over the spectrum of the Fokker-Planck operator range o
all the integer numbers. Obviously iflnPR, the enumera-
tion along the negative values ofn is redundant, and we wil
see later how this is handled in a specific example.

From the form of L1, and the boundary condition
]vcn(vmin ,t)50, it can be seen that the eigenfunctionc0
must always satisfy the condition]vc050, soc0 is a con-
stant. Becausêc0uf0&51 andf0(v) is a p.d.f., so that

E
vmin

u

f0~v !dv51,

we havec051. Finally, using Eq.~2.13!,

^c0ufn&5E
vmin

u

fn~v !dv50, ;n5” 0. ~2.14!

From this result we can argue that only the stationary m
f0 contributes to the normalization condition forp(v,t) ~see
also@22#!. As we will see later, this is a useful feature of th
eigenfunction expansion@11#.
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When the mean driving force alone is not enough to ma
V cross the thresholdu @A(u,t)<0#, so that a positive dif-
fusion term is necessary to have the emission of a spike,
neurons are evolving in anoise-dominated, subthresholdre-
gime, whereas whenA(u,t).0, the emission of an action
potential can occur also in the absence of noisy afferent
rents, and the neurons are in adrift-dominated, suprathresh
old regime of activity @8,23,12,9,13#. The activity regime
characterizes the statistical properties of the single neu
spike train: irregular firing~high coefficient of variation@24#!
corresponds to a noise-dominated regime, while regu
spike trains are related to a drift-dominated regime. Suc
spread in the coefficient of variation of interspike intervals
the single neuron does not spoil the hypothesis of the the
as long as the independence of the firing of different neur
holds @12,13#, which is reasonable in biologically plausibl
conditions@25#.

We conjecture that the eigenvalues ofL are real for noise-
dominated regimes and complex conjugates for drift do
nated regimes. For an ensemble of noninteracting neur
whose dynamics is directly driven by the eigenvalues ofL,
this implies that for drift-dominated regimes the neural no
interacting population can undergo transient oscillations~on
the way to the stationary state!, while this would be forbid-
den for noise-dominated regimes.

The above statements have been confirmed by exp
calculation in the case of constantA andB ~Wiener process
with drift, ‘‘linear IF neuron’’!, to be discussed in Sec. III.

As an aid to intuition, one can think of ap(v,t) which is
initially very sharply concentrated; if the dynamics ofp is
essentially governed by the driftA, its motion along the al-
lowed domain@vmin ,u# is close to a translation, with a mino
spreading effect due to diffusion. The probability flux acro
u is zero until the upper tail ofp reachesu, increases as the
bulk of the distribution goes throughu, and vanishes again
From then on,p restarts traveling fromvmin to u, while
maintaining slow spreading, and the emission rate underg
increasingly damped oscillations, until the stationary state
reached. As a toy example of an alternative case, one
imagine a pure diffusion~zero drift! process, starting from
the same initial condition, which even in the case of
v-dependentB makesp spread more and more, without ig
niting oscillations.

Although the above examples are special and simple
seems reasonable to assume that~transient! oscillations are
possible only when some ‘‘memory’’ is present in the moti
of p, and this can only be associated with the drift term.

As we show later, the eigenvalues ofL are not simply
related to the characteristic times of the system in the p
ence of a recurrent interaction, and the network activity c
be oscillatory also in the noise-dominated regime.

D. The emission rate equation

Thanks to the completeness relation~2.12!, p(v,t) can be
expressed as

up&5(
n

anufn&, ~2.15!
7-4
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wherean5^cnup& are the time-dependent coefficients of t
modal expansion. Sincep is real,an* 5a2n .

The dynamics of thean can be determined directly from
the Fokker-Planck equation~2.3! ~see, for instance, Ref
@11#!,

ȧn5^cnu] tp&1^] tcnup&5^cnuLp&1(
m

am^ṅ]ncnufm&

5^L1cnup&1 ṅ(
m

am^]ncnufm&

and then

ȧn5lnan1 ṅ(
m

am^]ncnufm&. ~2.16!

Here we have used the fact that the only time dependenc
c is implicitly due to the moments of the current,m ands2,
which are in turn functions of the raten(t) ~in other words,
external input is assumed to be stationary!. If several popu-
lations are present,] t c will have contributions from the
emission rates of the different populations~see Sec. II G!,
including external neurons, and̂]ncnufm& should be re-
garded as apopulation coupling term; it vanishes ifn does
not enter the afferent current and does not affect the dyn
ics of the depolarizations.

The infinite set of nonlinear differential equation~2.16!
does not contain all the information on the dynamics of
system. What is missing is the answer to the following qu
tion: Which is the emission raten, given p(v,t)? To ‘‘close
the loop’’ and generate closed equations for thea ~or then,
which is the natural observable for the collective state of
neural population! one needs a relation connectingp(v) to
n. n is the flux across the absorbing barrier which, from E
~2.6! and ~2.15!, is

n52 1
2 (

n
ans2~v,t !]vfn~v,t !uv5u . ~2.17!

Equations~2.16! and ~2.17! describe completely the dy
namics of the neural population, using as the only observa
describing the system the probability current across
threshold: the instantaneous emission raten. This is an ef-
fective way to reduce the dimensionality of the problem b
cause, as we will see later, a finite~and small! number ofas
is often enough for an adequate description of the time e
lution of n @26#.

The following remarks provide a simplification. Becau
only the stationary mode contributes to the normalizat
condition ofp(v,t), it follows thata051 at all times. Since
c051, the coupling term̂ ]nc0ufm&50. Furthermore, the
flux due to the stationary modef0 is the current-to-rate
transduction functionF(m,s2) of the single neuron in sta
tionary conditions@12#,

F~n!5F„m~v,n!,s2~v,n!…52 1
2 ]vs2~v,t !f0~v,t !uv5u ,
05191
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which binds the single neuron properties to the populat
dynamics.

The ~nonlinear! emission rate equation system can
written in matrix form as

aẆ 5~L1Cṅ !aW 1cW ṅ,

n5F1 fW•aW , ~2.18!

where aW is the vector of the modal expansion coefficien
with n5” 0; the elements offW are the flux over the absorbin
barrier for nonstationary modes@27#,

f n52 1
2 ]vs2~v,t !fn~v,t !uv5u , ;n5” 0, ~2.19!

the elements ofcW are the coupling terms between thenth
mode and the stationary one,

cn5^]ncnuf0&, ;n5” 0,

while C is the matrix of the coupling terms between th
nonstationary modes

Cnm5^]ncnufm&, ;n,m5” 0.

L is a diagonal matrix whose elements are the eigenvalue
L,

Lnm5lndnm , ;n,m5” 0.

Under the hypotheses which define the mean-field
proximation, Eq.~2.18! describes the collective behavior of
pool of neurons in terms of the fraction of emitting neuro
per unit time,n(t), thus providing a dynamical formulation
of the mean-field treatment, equally valid in stationary
transient regimes@28#.

A nonstationaryn(t) embodies the changes in time of th
average statistical properties of the neurons’ afferent curr
and can correlate the activities of two given neurons; t
should be regarded as a ‘‘trivial’’ correlation due to the inp
part of the current that neurons have in common~self-
consistently taken into account in the above mean-field tr
ment!. This does not imply a breakdown of theindependence
hypothesis which is at the heart of the formalism. The c
lective activity is still adequately described by a renew
nonstationary Poisson process completely determined bn:
Neurons are independent, conditionally to the average em
sion rate.

We also remark thatm and s2 in the network are no
longer independent parameters, but are linked throughn,
such that the latter becomes acompletedescription of the
network dynamics in the mean-field approximation.

1. Noninteracting neurons

A very simple case is that of a population of nonintera
ing neurons. Sincem and s2 do not depend onn, ]ncn

50 and the coupling terms vanish (C50 andcW50). The
emission rate equation~2.18! has now an explicit solution,
7-5
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MAURIZIO MATTIA AND PAOLO DEL GIUDICE PHYSICAL REVIEW E 66, 051917 ~2002!
n~ t !5F„m~ t !,s2~ t !…1 fW~ t !•e*0
t
L(t8)dt8aW ~0!.

As the afferent current is stationary, the eigenvalues, the
vector, and the transfer function are constants and the e
sion rate is

n~ t !5F~m,s2!1(
n

f nan~0!elnt ~2.20!

so that the spectrum ofL determines directly the characte
istic times of the population dynamics~the same result for
the uncoupled network is reported in@22#!. Consistently with
previous remarks, ast→`, n→F(m,s2), coherently with
a negative real part of the eigenvalues.

For Reln,0, after a time greater then 1/minnuRelnu,
initial conditions and transients are forgotten, and the stat
ary population activity is the same as the mean-field r
emissionF(m,s2) of the single neurons.

When the interaction is turned on, the ‘‘population ch
acteristic times’’ are obviously a complex mixture of sing
neuron properties and the properties of the collective activ

2. Synaptic delays

If we consider a constant delay timed in the transmission
of spikes, the rate equation is modified because all the te
including the parameters of the input currents@m(v,t) and
s2(v,t), implicit functions ofn] are to be calculated at tim
t2d,

aẆ ~ t !5@L~ t2d!1C~ t2d!ṅ~ t2d!#aW ~ t !

1cW~ t2d!ṅ~ t2d!, ~2.21!

n~ t !5F~ t2d!1 fW~ t2d!•aW ~ t !.

We can in principle generalize to the case in which del
are drawn randomly and independently at each site fro
distributionr(d). We should then taked into account in the
causal agent, the average number of afferent spikes per
time (n), substituting every occurrence ofn(t2d) with
*n(t2d)r(d)dd @9#.

E. Local analysis

The fixed points of the autonomous system~2.21! are

given byaẆ 50 andṅ50,

aW 50,

n5F~n!. ~2.22!

This is the self-consistency equation introduced in Ref.@4#,
and used in the context of a mean-field treatment in Ref.@8#
to study the steady states of a network of IF neurons.
expected, the conditionaW 50 implies that the p.d.f. of the
depolarization at the fixed point is the stationary mo
@p(v)5f0(v)#.

With a time-dependent perturbation approach we
study the local stability of the fixed points, their nature, a
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the characteristic times of transient departures from them
start, we setaW 5«aW 11«2aW 21••• and n5n01«n11«2n21
•••, wheren0 is the solution of the self-consistency equati
~2.22! and « is the size of the perturbation from the fixe
point. Any functionF of n can be expanded as a Taylor
series, which to second order gives

F~n!5F~n0!1«F8~n0!n11«2@F8~n0!n21 1
2 F9~n0!n1

2#

1•••,

whereF85]nF.
Inserting the above expansion in the rate equation,

comparing the terms of the same order, the dynamics of
first-order perturbation is

aẆ 1~ t !5L~n0!aW 1~ t !1cW~n0!ṅ1~ t2d!,

n1~ t !5F8~n0!n1~ t2d!1 fW~n0!•aW 1~ t !.

This system of ordinary differential equations with consta
coefficients can be solved using the Laplace transform.
resulting transformed emission raten1(s) is

n1~s!5
1

~esd2F8!2 fW•~sI2L!21cWs
$ fW•~sI2L!21

3@aW 1~0!esd1cWn1~0!#2~esd21!F8n1~0!/s%,

~2.23!

where (sI2L)21 is a diagonal matrix with elements 1/(s
2ln) and all the functions ofn are evaluated atn5n0. In
performing the Laplace transform ofn1 andaW , we assumed
aW 1(t)5aW 1(0) andn1(t)5n1(0) for any t,0.

The stability conditions and the characteristic times of
transient dynamics are in principle derived by standard me
ods, by calculating the poles ofn1(s). To characterize the
poles, we resort to approximations; we will see in the f
lowing two subsections how two kinds of small-couplin
approximation allow us to characterize two sets of poles
n1(s), which expose very different dynamical features.

We notice that, in order to find the whole set of poles
n1(s), only the zeros of (esd2F8)2 fW•(sI2L)21cWs are
needed: the other two possibly contributing terms which
pear in the curly brackets do not actually contribute@29#.

1. Stability

The asynchronous staten(t)5n0 is stable if all the poles
sn of n1(s) have a negative real part. To evaluate the stabi
conditions, we first look for poles on the imaginary axe
which ~if they exist! separate the region of stability from tha
of instability. The polessn5xn1 iyn of n1(s) solve the equa-
tions

exd cos~yd!2R~s!5F8, ~2.24!

exd sin~yd!2I ~s!50,
7-6
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where R(s)5Re@ fW•(sI2L)21cWs#, I (s)5Im@ fW•(sI
2L)21cWs#, and s5x1 iy . Due to the presence of thecW
terms,R(s) and I (s) are expressions of the recurrent co
pling and vanish for uncoupled neurons.

The solutions are quite different depending on the exc
tory or inhibitory nature of the neurons. For a population
excitatory neurons,F is a monotonically increasing functio
of n, F8(n).0. In the caseF8(n0)51, it is easy to see
that s50 is a real pole ofn1(s). This exact condition deter
mines a transition from stable to unstable steady states
the system, because when

F8~n0!.1,

the real pole becomes positive andn0 is an unstable state
@30#. We can see this by taking as an approximation of t
real pole the solution ofesd2F850,

s05
1

d
ln F8~n0!, ~2.25!

which is indeed a good approximation if the real pole is clo
to zero@ usu!minuRe(ln / f ncn)u#.

To characterize one set of solutions of Eqs.~2.24!, we
assume that for sufficiently small coupling the termsR(s)
andI (s) are negligible compared toF8, at least in the neigh-
borhood of a pointsn

(0) which is a solution of

exd cos~yd!5F8, ~2.26!

exd sin~yd!50,

and is given bysn
(0)5(ln F81i2np)/d for excitatory neurons

and sn
(0)5@ lnuF8u1i(2n21)p#/d for inhibitory neurons (n

runs over the integers!.
Under the above assumption, to be checkeda posteriori,

we can perturbatively expand aroundsn
(0) ~with respect to

uR1 i I u) to find a succession of solutions of Eqs.~2.24!,

sn5sn
(0)1

fW•~sI2L!21cWsus5s
n
(0)

F8d
.

Such poles cross the imaginary axis and destabilize the a
chronous state when Resn50. This happens when

F8.12R~ i2pn/d!

for excitatory neurons, and when

F8.212R@ i ~2n21!p/d#.

for inhibitory neurons~the stability condition in this case i
approximately given byF8.21).

In the cases examined in the following, it turns out th
the polessn move towards the imaginary axis for increasi
uF8u, and for excitatory neurons the pole on the real axis
the first to reach the imaginary axis.

For drift-dominated regimes, the above results hold p
vided thatsn is far from ln , because otherwiseR(s) and
I (s) are no longer negligible; since Imln;n0 @6,22# and
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Im sn;1/d, the above condition is certainly satisfied ifd
!1/n0, which is the case in the typical frequency range.

A noteworthy implication of the above stability analysis
that asingle neuronfeature, the slope of the current-to-ra
transduction functionF, determines in general the stabilit
of the fixed pointn0 for a populationof neurons. It is also
worth noting thatF8 depends on the synaptic couplin
strengths, viam and s2, and the average properties of th
recurrent interaction among neurons emerge as the prim
features governing the network stability.

We also remark that the above stability condition, bei
derived in the framework of the linear analysis, depends
the dynamics~2.1! of the single neuron membrane potent
v only throughn ~via m and s2). Indeed, in the linear ap
proximation we can write the evolution equation forn in
such a way that thea no longer appear. It is tempting t
speculate that, even in the nonlinear case of Eq.~2.18!, since
the time evolution ofp(v,t) is ultimately determined byn
throughm ands2, the dynamics of the probability currentn
is in fact a complete description of the dynamics ofp(v,t)
~once initial conditions and stationary external input a
given!. The seemingly nonrecoverable loss of informati
which takes place when reducing the motion ofp(v,t) to
that ofn(t) could be avoided because of the peculiar dep
dence of the Fokker-Planck equation on then itself; a related
concept will be touched upon in Sec. II F, where we emp
size that different ‘‘histories’’V(t) in the ensemble describe
by p(v,t) only communicate to each other via spikes.

The infinite set of poles responsible for the stability of t
system are due to the presence of a delayd in the transmis-
sion of the spikes: we therefore call themtransmission poles
sn

(t) . For a system close enough to the stability bounda
very high frequency of activity at frequencies of order 1d
can arise. Transmission poles disappear for uncoupled
rons.

As will become clearer in the following, those oscilla
tions, fast as they are, have nothing to do with the poss
slow, oscillatory response of the network to a change in
external inputs.

This set of poles was first observed in a mean-field
proach not taking into account fluctuations in the affere
current in Ref.@5#, where they are termed thegross structure
of the spectrum. Furthermore, previous works by other
thors@9,31,13# have shown that the description of the syste
beyond the stability boundary is described~once a third-
order expansion has been carried out! by very fast limit
cycles, at least for networks of inhibitory IF neurons. On t
other hand, Eq.~2.24! provides a generalization of the find
ings of the quoted works as for the dynamics within t
stability region.

Coming back to the role of delays, it turns out that for
excitatory population in drift-dominated regimes, the re
part ofsn

(t) , as a function ofd, for fixedF8 is not monotonic
for larged ~contrary to what happens in the approximatio
adopted above!. For successive values ofn, Resn

(t) becomes
positive in an interval of values ofd, and differentn corre-
spond to intervals beginning atd;n/n0. Thus,for large de-
lays the instability of the excitatory network with negligibl
7-7
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noise can be oscillatory in nature. The dynamical scena
emerging in such situations has been described in@15#. For
large delays, the oscillatory instability which occurs at fr
quencies near Imlm is driven by a transmission polesk

(t)

close to the diffusion polesm
(d) . So a kind of coupling

emerges in this condition between the transmission and
diffusion poles: the almost regular transport of realizatio
with approximate periodicity 1/n0 locks to the transmission
of waves of neural activity, affected by a delayd;1/n0
@7,32#.

2. Transient behavior and characteristic times

We remarked that for uncoupled neurons, the poles on1
are the eigenvalues of the Fokker-Planck operator. This s
gests a guess for finding other sets of poles as small-coup
perturbations of thel. For the sake of a clear presentatio
we consider the case of a population of excitatory neuron
a drift-dominated regime, and we focus on the first eig
value, l1 ~and its complex conjugate!, assumingusud!1
such thatesd.11sd ~verifieda posteriorito be a very good
approximation for physiologically reasonable values of s
aptic delays!. We also assume that the termsf ncns/(s2ln)
are negligible forn5” 61. Then the new set of poles is de
termined by the equation

11sd2F82S f 1c1

s2l1
1

f 1* c1*

s2l1*
D s50.

We further takeu f 1c1u small, and correspondingly w
write an expansion for the solutionsn.sn

(0)1«sn
(1) , where«

is orderu f 1c1u. At order zero,sn
(0) is one of the solutions o

a third degree equation. These include one real solut
close to thes0 transmission pole in Eq.~2.25!. The first-order
equation is first degree insn

(1) , such that we have three so
lutions s0

(1) , s1
(1) , ands21

(1) , one for each of the solutions a
order zero. The complex solutions are

s15l1S 11
f 1c1

12F81l1d
D , ~2.27!

ands215s1* .
For the excitatory population (F8.0), Eq. ~2.27! sug-

gests that whenF8→1, and then whenu f 1c1u increases,t1
[21/Re(s1), the longest characteristic time of the syste
becomes small, so that the system reaches more quickly
steady state, as will be shown in Sec. III for a specific ca

Remembering thatF5F(m,s2), and taking into accoun
that for an excitatory population bothm and s2 are mono-
tonically increasing functions of the synaptic couplings~see,
for instance,@33#!, it is seen that an increase in the recurre
couplings brings about an increase inF8. This implies that if
learning is expressed as a potentiation of the synaptic effi
cies, this would be observed in the response time of
population to an external stimulation, so that a strengthe
recurrent coupling can prime the population to respo
quickly. We further discuss this point in Sec. III D, in th
context of a specific model. Experimental evidence provi
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some support for this statement~see, for example, Ref.@34#!,
which we feel would deserve further experimental investig
tion.

In the regions not too close to the stability boundary,s1
~and the analogous polessn nearln) have real parts smalle
in module than those of transmission poles, so that they
in the situations of interest, responsible for the characteri
time of the approach to an asynchronous staten0.

Turning to the imaginary part ofs1, for the relatively low
frequencies of collective oscillations represented by this p
~directly related to the eigenvaluel1), the remarks at the end
of Sec. II C 1 apply. Since the above poles are intimat
related to the pure ‘‘free’’ diffusion process, we term the
diffusionpoles.

In the low noise limit, the diffusion poles can be asso
ated with the characteristic times and resonant frequen
observed in previous works using a mean-field appro
with a deterministic afferent current@2,5,6,10#, and called in
@5# the fine structureof the spectrum. The variance of th
recurrent afferent current, taken into account in the pres
theory, dramatically affects the behavior of the system~par-
ticularly in noise-dominated regimes!, as was recognized in
Refs. @6# and @22# for the case of external activity
independent noise.

The above resonant response due to the diffusion pole
never enough to challenge the network local stability; on
other hand, we discussed in the previous subsection tha
suitable~large! delays, a ‘‘coupling’’ between the transmis
sion and the diffusion poles emerges which facilitates
ignition of an unstable regime~driven anyway by the trans
mission poles! at frequencies around multiples ofn0.

3. Some remarks on the nature of the poles

To summarize the phenomenological implications of t
above analysis, we list some remarks on the role and be
ior of the two families of poles ofn1(s) discussed in the
previous subsections.

The diffusion poles~hereafter calledsn
(d)) do not affect

the stability of the excitatory neural population@which is
entirely due to the transmission poles (sn

(t))] since their real
part is always negative, as that of the eigenvaluesln . Indeed
we argued that for increasingF8, the sn

(d) get farther and
farther from the imaginary axis, while the opposite is true
sn

(t) , ultimately bringing the network to instability.
In many cases of interest~and perhaps in general!, the real

part of ln increases with increasingn, so that the relaxation
times of the system are essentially determined bys1

(d) . Thus,
even if in principle we could have repeated the approxim
calculation leading to Eq.~2.27! for any eigenvalue, tha
term is likely to provide the main contribution.

The transmission polessn
(t) are analogous to those ob

served in Refs.@5# and @9#, and disappear for a noninterac
ing network, or vanishing transmission delays. The diffus
polessn

(d) are inherently related to the nature of the diffusi
process describing the network’s dynamics in the mean-fi
approximation. They affect the network dynamics even in
noninteracting case, both governing the transient respons
the network to a change in its inputs, and contributing lo
7-8
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frequency components to the spectrum of the global acti
for a finite network, as we show in the following sectio
@35#.

F. Finite-size effects

Finite N brings about both ‘‘incoherent’’ fluctuations
which are already taken care of in the mean-field theory,
‘‘coherent’’ fluctuations, which give rise to new phenomen

As for the first, in the presence of sparse connectiv
~such that neurons share a negligible portion of comm
input!, or other sources of quenched randomness affec
the interaction among neurons~effectively decorrelating neu
rons’ firings even for high connectivity!, the stochastic
changes of the current are sensed by different neuron
incoherent fluctuations@36#. These fluctuations are take
care of in the mean-field approach throughs2(v,t).

On the other hand, the number of spikes emitted in a t
interval dt by the network is a Poisson variable with me
and varianceNn(t)dt, as observed in Refs.@9,10#. The esti-
mate ofn(t) @similarly to p(v,t)] is then a stochastic proces
nN(t), well described in the limit of largeNn by

nN~ t !5n~ t !1An~ t !

N
G~ t !, ~2.28!

where G(t) is a white noise as in the Langevin equati
~2.1!, andn(t) is the probability of emitting a spike per un
time in the infinite network. Such finite-N fluctuations,
which affect the global activitynN , are coherently felt by all
neurons in the network: The now stochastic mome
m„v,nN(t)… ands2

„v,nN(t)… of the afferent current all expe
rience the same fluctuation, since they are driven by the
lective activitynN . This approach leads then to a ‘‘stochas
version’’ of the Fokker-Planck operatorL, LN , and conse-
quently of Eq.~2.3!. Stochasticity disappears in the limitN
→` because

lim
N→`

nN~ t !5n~ t !.

Besides affectingm and s2, further finite-N effects are
related to fluctuations atu andH. The flux nN(t) exiting u
reenters at the reset potentialH, determining a departure
from the boundary condition~2.7!, due to a stochastic sourc
of realizations, not present in the infinite-N limit. The net
flux conservation can be recovered by adding a multipli
tive noise to the Fokker-Planck equation, representing
stochastic fluctuation of the reentering flux, with respect
its expected value in the infinite-N limit:

] tp~v,t !5LNp~v,t !1d~v2H !@nN~ t !2n~ t !#

5LNp~v,t !1d~v2H !An~ t !

N
G~ t !. ~2.29!

This equation, together with Eq.~2.28!, describes the dynam
ics of a population of neurons for finiteN, and we can now
try to derive the finite-N emission rate equation analogous
Eq. ~2.18!.
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Before that, a remark is in order: The above description
terms ofn(t) andp(v,t), which are the infinite-N dynamic
variables, is justified in this context because in this cont
the neurons interact only through the emitted spikes: T
different membrane potentialsVi(t) and Vj (t) do not di-
rectly interact. The interplay between the two levels of d
scription (nN , pN) and (n, p) can be viewed as follows
For finite N, eachV still evolves, as already remarked, a
cording to the Langevin equation~2.1!, since to a very good
approximation its afferent current is ad-correlated Gaussian
process; so, the purely diffusive part of the collective dyna
ics is still captured by the Fokker-Planck equation forp, the
evolution equation for an infinite ensemble of neurons. Th
we have to take the finiteN into account on the boundarie
~i.e., upon spikes emission!, which in a sense make a finit
subset of the infinite number of neurons ‘‘real.’’

As a complete set over which to expand the above s
chastic Fokker-Planck equation, we still take the eigenfu
tions ofLN with their eigenvalues, which are now stochast
explicit functions ofnN . The use of this stochastic movin
basis leads to the following expression for the emission r
equation:

aẆ 5~L1CṅN!aW 1cW ṅN1cW An/NG,

n5F1 fW•aW ,

nN5n1An/NG, ~2.30!

where the elements ofcW are the nonstationary eigenfunction
of the adjoint operatorLN

1 , evaluated at the reset potentia
cn(H,t). For simplicity, we omitted the dependence on tim
which is the same as in Eq.~2.21!. It should be noted that the
above stochastic emission rate equation exhibits a com
cated dependence on the finite-size noise, withL, C, andcW
all functions ofnN : This is the expression of the noisy natu
of the operatorLN in this context.

The above fluctuations act as an ongoing series of ins
taneous endogenous perturbations, and as such they p
the characteristic times of the system. This will show up ve
clearly in the study of the finite-N power spectral density o
the collective activity, as we will see later.

From Eq.~2.30!, we see how the two sources of stocha
ticity ~the fluctuations of the moments of the afferent curre
leading toLN , and those of the reentering flux into the res
potential H) make the dynamics of the coefficientsan(t)
@and therefore the nature ofp(v,t)] stochastic.

In order to single out the different sources of noise, it
useful to discuss again the case of noninteracting neur
when the moments of the afferent current are independen
the emission raten of the neuron population, the Fokke
Planck operatorL is deterministic as its eigenvalues an
eigenfunctions, and the coupling terms vanish, so that
emission rate equation reduces to

aẆ 5LaW 1cW An/NG,

n5F1 fW•aW ,
7-9
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nN5n1An/NG.

For drift-dominated regimes, all thean are complex stochas
tic processes driven by the samed-correlated noise, and w
can prove that each one of them has to a good approxima
a resonant frequency in Imln.nn. Since nN is a linear
function ofa throughn, the spectral content ofa will endow
nN with nontrivial spectral properties. We emphasize that t
happens for a noninteracting network, and it is a manife
tion of the finite-N fluctuations not included in those ofm
ands2.

Intuitively, for drift-dominated regimes, a large fluctu
tion in p, due to the reentering flux inH, propagates essen
tially undeformed towardsu, since in that regime it is no
spread much by the diffusion.

1. Local analysis

Asynchronous states are now represented by a distribu
of emission rates around the mean-field fixed pointn0. The
local analysis described in the previous section can be
plied in the same way to this case. We assume the zero-o
contribution to be deterministic and constant, and the s
chastic component only affect the first and higher orders
perturbations, so that for large enoughN, the leading contri-
bution of the stochastic driving forceAn(t)/NG(t)
5A@n01n1(t)1•••#/NG(t) is

h0~ t !5An0

N
G~ t !

and we will then write

aẆ 1~ t !5LaW 1~ t !1cW ṅ1~ t2d!1cW h0~ t !,

n1~ t !5F8n1~ t2d!1 fW•aW 1~ t !1h0~ t !, ~2.31!

where all the time-independent terms are evaluated atn(t)
5n0.

The previously discussed questions about the stability
the transients are not altered by the finite-size effects, as
pole composition of the Laplace transformn1(s) of n1(t) is
unaffected by the presence ofh0, which enters the numera
tor.

2. Power spectral density

Under the conditions of validity of the local analysis, th
system is stochastic and linear, and can be fully character
by the driving white noiseh0(t), whose power spectrum
uh0(v)u2 is n0 /N, and the transfer function~the Fourier
transform of the impulsive response!, T1(v),

T1~v!5
11 fW•~ ivI2L!21cW

~12F8e2 ivd!2 i fW•~ ivI2L!21cWve2 ivd
.

If one wants to consider the contribution of the averagen0 to
the emission raten(t), a term proportional tod(v) has to be
added, which we omit for simplicity.

The power spectrumP1(v) of n1(t) is then given by
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P1~v!5uT1~v!h0~v!u2

5
u11 fW•~ ivI2L!21cW u2

u~eivd2F8!2 i fW•~ ivI2L!21cWvu2
n0

N
.

~2.32!

P1(v) has two series of peaks: one is centered around
imaginary part of the polessn ~the resonant frequencies o
the system!, whose width is proportional to Resn . As we
will see in the next section, this provides evidence that i
system of coupled spiking neurons, macroscopically diff
ent characteristic times coexist~as suggested by experimen
tal evidence in the study of the cross-correlation function
neuron activity!. They span a range from very low
(;10 Hz) to high frequency of the order of 1/d; these latter
peaks have been recognized in@5,9#.

The numerator modulates the spectrum, inducing a sec
set of peaks corresponding to thel. So we can recognize
two qualitatively different finite-N contributions toP1(v):
one is related to going fromL to LN in Eq. ~2.29! and pro-
duces the first set of peaks; it has in principle a global eff
on P1(v), but it turns out to significantly affect only the
high-v part related to transmission poles. The other finiteN
contribution toP1(v) is the one determined by the fluctua
tions of the reentering flux atH, and has a major effect fo
low v ~at least for drift-dominated regimes!. This provides
phenomenological evidence for the role of the latter sou
of finite-N noise.

The numerator of Eq.~2.32! is the only element that doe
not vanish when the neurons are uncoupled (F850 andcW
50),

P1~v!5u11 fW•~ ivI2L!21cW u2
n0

N
. ~2.33!

It provides a nontrivial contribution only at low frequenc
since

fW•~ ivI2L!21cW 5 (
n5” 0

f ncn~H !

iv2ln

tends to zero whenv→`, where P1(v) approaches the
power spectrum of a white noise. At low frequency we e
pect to see some resonant peaks around Imln , at least in
strongly drift-dominated~suprathreshold! regimes~remem-
ber that we conjecture and verify later in a specific case
Imln50 for noise-dominated regimes!.

This component of the power spectrum originates fro
the diffusive transport of the fluctuations ofp(v,t) induced
at the reset potential by the reentering stochastic flux.
contribution is not negligible only for those regimes that
low a slow forgetting of the history of the depolarization,
it is the case for drift-dominated regimes.

If a distribution of delays is introduced, it can be argu
~and partially verified in simulations! that the high-v part of
the spectrum gets flattened, thus affecting mostly the tra
mission part of the spectrum. This, we expect, has impli
tions for the stability of the network, since the damping
7-10
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POPULATION DYNAMICS OF INTERACTING SPIKING . . . PHYSICAL REVIEW E66, 051917 ~2002!
the high-frequency tail of the spectrum can be viewed as
effective increase of the real part of the high-v transmission
poles, thereby helping keeping the system away from
stability boundary~see also Ref.@9# for a similar remark!.

G. Several interacting populations

The approach discussed in the previous subsections h
straightforward extension to the case of several interac
populations of IF neurons. Following a common practice
the mean-field analysis, the network of interacting neuron
partitioned in ‘‘homogeneous populations,’’ each compos
of a subset of neurons which are structurally identical~same
emission threshold, same leakage term, etc.! and share the
same statistical properties of their afferent current~i.e., m
and s2), emitting then spikes at the same rate. This pa
tioning accounts for structurally different~e.g., excitatory
versus inhibitory! or functionally different~e.g., stimulated
versus nonstimulated! neurons. In this case, for each popu
tion a there is a Fokker-Planck equation with its opera
La , depending on the momentsma and sa

2 of the afferent
current, probability density functionpa(v,t), and emission
ratena . All of these variables are now functions of the a
tivity of all the ~say! P populations, so thatma5ma(nW ) and
sa

25sa
2(nW ), wherenW 5$na%1

P .
The ~infinite-N) emission rate equation becomes

aẆ a5S La1 (
b51

P

CabṅbD aW a1 (
b51

P

cWabṅb ,

na5Fa1 fWa•aW a

for any aP@1,P#, whereaW a is the vector of the modal ex
pansion coefficients of the p.d.f.pa , the flux vector isfWa

5 fWa(ma ,sa
2), the population gain function is Fa

5Fa(ma ,sa
2), the diagonal matrix of the eigenvalues

La5La(ma ,sa
2), and the coupling matrixC and vectorcW

are now expressions not only of the recurrent interact
(a,a) but also of the coupling between different populatio
(a,b),

cWab5$^]nb
can~ma ,sa

2 !ufa0~ma ,sa
2 !&%n5” 0

and

Cab5$^]nb
can~ma ,sa

2 !ufam~ma ,sa
2 !&%n5” 0 .

It should be noted that if neurons belonging to differe
populations differ only for the afferent current, taking in
account several interacting populations does not require u
study anew the Fokker-Planck operatorL and its eigenvalues
and eigenfunctions, so that the above expansion relies u
the same information needed for the case of a single po
lation. This is due to the particular functional dependence
the activity of the different populations, which is alway
‘‘seen’’ through the momentsma andsa

2 of the afferent cur-
rents.
05191
n

e

s a
g

is
d

i-

r

n

t

to

on
u-
n

By such an extension, the present formalism can emb
the study of multipopulation systems of IF neurons, p
formed under various viewpoints and with different tools
many authors@5,8,37,13,38# ~see also@39,40#!.

It can be interesting to observe that such an appro
allows us in principle, in the limit of an infinite number o
populations, to study the case of an inhomogeneous pop
tion, viewed as a collection of small~but large enough to
satisfy the mean-field hypotheses! interacting homogeneou
populations~as discussed in Refs.@5,7#!. The case of spa-
tially structured networks of neurons can then be approac
along these lines, and it is part of planned future work.

III. AN EXAMPLE: ONE POPULATION OF LINEAR IF
NEURONS

Because of its amenability to analytical treatment, we s
cialize the above analysis to the linear IF neuron~LIF! @12#,
whose depolarization is described by a Wiener process w
drift, having a reflecting barrier atvmin50, which we also
choose as the reset potential (H50). It was proven in
@12,31# that networks of IF neurons retain most of the co
lective properties of those composed of leaky IF neuro
The decay term is constant:f (v)52b. For simplicity here
we setm(t)2b→m(t), consideringb as a constant inhibi-
tory afferent current, and the corresponding Fokker-Pla
operatorLLIF becomes

LLIF~v,t !52m~ t !]v1 1
2 s2~ t !]v

2 .

Equation~2.9! is therefore a homogeneous second-order
ferential equation with constant coefficients, whose gene
solution, if l5” 0, is

fl~v,t !5@c1ezv/u1c2e2zv/u#e
jv
u ~3.1!

~valid for z5” 0), where we set

z~l![
u

s2
Am212s2l,

j[
mu

s2
. ~3.2!

The spectrum of the operator, and the arbitrary constant
its eigenfunctions, are determined by the boundary con
tions, as we show in the following.

From Eq. ~2.11!, the adjoint operator for this specifi
model is

LLIF
1 ~v,t !5m~ t !]v1 1

2 s2~ t !]v
2 ,

and its eigenfunctionscl are

cl~v,t !5@c1ezv/u1c2e2zv/u#e2jv/u.
7-11
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MAURIZIO MATTIA AND PAOLO DEL GIUDICE PHYSICAL REVIEW E 66, 051917 ~2002!
A. Eigenvalues and eigenfunctions ofL LIF

1. The stationary mode:lÄ0

l50 is an eigenvalue ofL. The corresponding eigenfunc
tion, which in general depends on time throughm ands2, is

f0~v,t !5
c

m
@12e22j(u2v)/u#,

wherec is given by the normalization condition

c[F~m,s2!5F s2

2m2 S 2mu

s2 211e22mu/s2D G21

,

the current-to-rate transduction function derived in Ref.@12#.
In stationary conditionF(m,s2) gives the output emission
rate n of the population~its gain function! and f0 is the
p.d.f. p(v) of the membrane potential at any time.

Recall that the eigenfunctionc0 of the adjoint operator
LLIF

1 is

c051.

2. The nonstationary modes

To characterize the spectrum of the operatorLLIF , we
study the generic eigenfunctionfl(v,t) for l5” 0 with the
boundary conditions appropriate for the LIF neuron.

The presence of the absorbing barrier~2.5! constrains Eq.
~3.1! to the form

fl~v,t !5clejv/u sinh
z~u2v !

u
, ~3.3!

which, due to the flux conservation~2.7! and the reflecting
barrier ~2.8!, satisfies the following equation:

1
2 s2]vfluv5u5~ 1

2 s2]vfl2mfl!uv→01.

From this we find thecharacteristic equation

zej5z coshz1j sinhz, ~3.4!

whose solutions give the set of all the nonvanishing eig
values of the operatorLLIF . It easy to verify from these
equations the property*fl(v,t)dv50.

Before discussing the characteristic equation, we st
the eigenfunctions of the adjoint operatorLLIF

1 , taking into
account the corresponding boundary conditions:cl(u)
5cl(0) and]vcl(0)50. We obtain again Eq.~3.4!, con-
sistently with the known property that the eigenvalues are
same as those ofLLIF , and the following expression for th
eigenfunctions:

cl~v,t !5e2jv/uFz cosh
zv
u

1j sinh
zv
u G . ~3.5!

In the above equation, we omitted the integration co
stant, because we can absorb it in thecl of fl . This con-
stantcl in Eq. ~3.3! is complex and can be determined fro
the biorthonormality condition~2.13!, as in the case of the
05191
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stationary mode. Making use of the characteristic equatio
is not hard to prove that̂cl8ufl&50 whenl85” l, whereas
the normalization condition̂clufl&51 requires

cl5
2z

u@zj coshz1~z22j!sinhz#
.

3. The spectrum of LLIF

For the sake of brevity, we do not give the details of t
computation of the eigenvalues ofLLIF , and we just summa-
rize below the key features of the result~details of the com-
putation are available from the authors upon request!.

Figure 1 shows the first seven eigenvalues~including l
50) as a function ofj. First of all, we note that Rel<0, as
expected. It is also apparent that the real and imaginary p
of l have an abrupt transition when the input current go
from a noise-dominated regime (j,0, i.e., negative total
drift! to a drift-dominated one (j.0, i.e., positive total
drift!: In the first case, the eigenvalues are real and nega
whereas if the drift is positive, the eigenvalues are comp

To summarize, one eigenvalue ofLLIF is

l050

for any dynamic regime. The other eigenvalues are, foj
50,

ln~0!52
s2

u2
2p2n2

for any integern5” 0.
It turns out that Reln(j);22p2n2s2/u22O(j), which

suggests that the characteristic times associated with ei
valuesln decrease like 1/n2 whenn increases, leading us t
assume that in a quasistationary regime only the first eig
values play an important role: The modes are exponenti
damped with characteristic timesuRelnu21;1/(ns)2 ~see
also Sec. II E 3!. This also suggests that the noise in t
afferent current plays an important role for uncoupled n

FIG. 1. The spectrum ofLLIF as a function ofj. Real~left! and
imaginary ~right! parts of the eigenvalues ofLLIF ln (nP
@23,3#), for j varying in the same interval. In the Rel(j) plot the
dashed lines are the reference values22p2n2, for j50. We set for
simplicity s251 andu51. See text for details.
7-12
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POPULATION DYNAMICS OF INTERACTING SPIKING . . . PHYSICAL REVIEW E66, 051917 ~2002!
FIG. 2. Transient response of a population of uncoupled neurons: Simulations vs theory. The initial condition isV(0)50 for all the
neurons. Att50 a current is injected, with the same constantm ands2 for all the neurons, such as to asymptotically drive the neuron
fire atn0525 Hz. The upper and lower plots refer to neurons in drift-dominated and noise-dominated regimes, respectively. Light g
are the emission rate of 10 000 simulated IF neurons; dashed-dotted, dashed, and solid lines are the theoretical emission rates due
second, and third~couples of! modes, respectively. Damped oscillations are visible only in the drift-dominated regime, mainly due to th
eigenvalue ofL ~dotted lines are the real parts of the first modes!.
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works: The greater the fluctuations in the afferent current,
shorter the response time, as expected.

As we will see in the following section, in the absence
interaction between neurons, the imaginary part of the eig
values, which appears only in a drift-dominated regime,
counts for the oscillatory behavior of the population em
sion rate. Such oscillation is dominated by the first spec
term (n51), and its period is given by 2p/uIm l1u.u/m
.1/n, which is the time a neuron takes, in the absence
noise, to reach the threshold starting fromV50.

B. A first check: Noninteracting neurons

For an ensemble of noninteracting neurons,n(t) is given
by Eq.~2.20!, where the fluxesf n , defined by Eq.~2.19!, are
evaluated using eigenstatesfn given by Eq. ~3.3!. If we
further assume the initial conditionp(v,t50)5d(v), the
result is

n~ t !5F~m,s2!1
s2

2u
ej (

n5” 0
c~ln!z~ln!2elnt.

Theoretical predictions, and the range of validity of t
approximations involved, are checked against simulati
~and also numerical integration, not shown! of the Fokker-
Planck equation.

Figure 2 shows the population emission rate versus ti
for an ensemble of uncoupled LIF neurons, in a dr
dominated~top! and in a noise-dominated~bottom! regime.

Neurons all start integrating the afferent current from
initial condition V50, and parameters are such as to hav
stable, 25 Hz firing rate as a fixed point. The figure is me
to illustrate how drift- or noise-dominated regimes imp
very different transient responses: damped oscillatory in
former case and exponentially approaching the asympt
state for the latter, as predicted by the theory. The quan
tive agreement between theory~solid black line! and simula-
tion ~gray line, average activity of 10 000 simulated LIF ne
rons! is remarkable. We note that only six spectral terms~the
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first three eigenmodes and their complex conjugates! are
enough to account for the properties of the transient respo
with high accuracy; furthermore, in the cases shown, the
erarchy of characteristic times is such that after a few m
seconds the first eigenvalue alone guides the evolution on
~the real part of the first term is the dotted line in the plot!.
The very early stages are not well reproduced, since m
and more terms would be needed as we go towardst50; a
modest improvement over the first mode due to the inclus
of the next two is barely visible in the second plot. Th
hierarchy of times pertaining to the successive eigenvalue
clearly illustrated in Fig. 1.

We remark that the numerical integration of the Fokk
Planck equation~not shown! is in excellent agreement with
the simulation, which proves that the hypotheses underly
the theory are fulfilled.

The spectral properties associated with the stationary s
are illustrated in Fig. 3. We recall that a nontrivial spect
structure~modulating the constant, white noisen0 /N spec-
trum! appears as a result of finite-size effects on the pr
ability current at the boundaries, and, since we are dea
with uncoupled neurons, the transmission poles do not c
tribute. The figure shows a comparison between the theo
cally predicted spectrum, Eq.~2.33!, and the one derived
from simulations. The position of the peaks is determined
the imaginary part of the diffusion poles~which coincide
with the eigenvalues for the uncoupled network!. The real
part of the poles determines the height and width of
peaks. Similar results have been found in Ref.@10#, and also
in Refs.@2,15#.

C. Populations of interacting neurons

1. A network of inhibitory neurons

We now move to the more interesting case of a populat
of interacting neurons, and test the theoretical predicti
concerning the transient behavior and the spectral proper
We first show in Fig. 4 the distribution of the poles ofn1(s)
@Eq. ~2.23!# for a population of interacting inhibitory neu
7-13
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MAURIZIO MATTIA AND PAOLO DEL GIUDICE PHYSICAL REVIEW E 66, 051917 ~2002!
rons. The diffusion and transmission poles are plotted in
complex plane for 13 values ofF8, all corresponding to the
same fixed-point emission rate~by adjusting external cur
rents and couplings!.

It is seen that for the diffusion poles, the real part sta
negative, while that of the transmission poles ultimat
crosses the imaginary axis for high enough coupling, ther
determining the instability of the fixed point. It is also appa
ent from the plot that the imaginary part of both the tran
mission and the diffusion poles~the frequency of the assoc
ated oscillations! is essentially constant with respect toF8,
while the characteristic times of the transient response, a
ciated with the real part, are very sensitive toF8, and there-
fore to the coupling~stronger coupling, quicker response!.
For inhibitory neurons, the transmission poles always hav
nonvanishing imaginary part; this suggests the oscillatory
ture of the instability, when the real part ofs(t) becomes
positive. In fact, it was proved in@9# ~see also Ref.@31#! that
the inhibitory network undergoes a Hopf bifurcation. Up
tiny variations, for all the shown values ofF8, Im sn

(t)

5p(2n21)/d.
Figure 5 shows the distribution of the diffusion and tran

mission poles in the complex plane for an inhibitory popu
tion in a noise-dominated regime. Markers and shading
as in Fig. 4. The network is stable for all the points sho
~though it is still true that the transmission poles are resp
sible for the instability of the network for high enough co
plings!. It is seen that in this case the real part of the dif
sion poles has a weak dependence on the couplings, w
the associated imaginary parts strongly depend on them
also stress that the diffusion poles exhibit an imaginary p
even if the eigenvalues ofL are real.

Figures 6, 7, and 8 compare, for coupled inhibitory n
works, theoretical predictions to simulations~details are in
the captions!. We remark that, as anticipated, finite-size flu
tuations do not affect the transient behavior of the netwo
and Fig. 6 illustrates the excellent agreement between si

FIG. 3. Power spectrum of the activity of a population of u
coupled neurons in a drift-dominated regime: Simulations vs the
The solid line is the power spectrum from a simulation of 60 sec
a stationary condition~after decay of the transient!; the thick gray
line is the theoretical prediction; the dashed line is the flat po
spectrum of the white noise with variancen0 /N(n0520 Hz and
N51000).
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lations and the theoretical predictions in the infinite volum
limit.

Figure 7 shows the power spectral density of the popu
tion activity, theory versus simulation. The population act
ity has been sampled from simulation after the transient w
extinguished, in order to capture only the stationary sp
trum. Besides the apparent good agreement between th
and simulations, we note the following:~i! the position of the
high-frequency~transmission! peaks is unaffected by finite
size effects, coherently with the stated irrelevance of the
ter for the poles ofn1 ~see remarks at the end of Sec. II F!
~compare the position of the peaks with the imaginary pa
of sn

(t) in Fig. 4!; ~ii ! even if also the frequencies of the pea
potentially due to the diffusion poles are insensitive to fini
N fluctuations, the low-v part of the spectrum is strongl
affected: new peaks appear, at frequencies determined b
imaginary part of the eigenvalues ofL, as a result of the
c-dependent term in Eq.~2.32!, which captures the effects o
the fluctuations of the reentering flux inH; the latter, finite-N

y.
n

r

FIG. 4. Poles distribution for a recurrent inhibitory populatio
with different coupling strengths in a drift-dominated regime. D
monds: first four diffusion poles (sn

(d)); circles: first three transmis
sion poles (sn

(t)) ~poles are complex-conjugate pairs!. The darker the
marker, the smaller~in module! the slope of the transfer function
and the coupling strength.s1

(t) ~with its complex conjugate! is the
first pole crossing the imaginary axes, determining the instability
the population dynamics. For different coupling strengths the ex
nal currents are adjusted in order to have the same fixed poin
n0520 Hz. It is clearly seen in the figure that the diffusion and t
transmission poles move in opposite directions along the real a
whenF8 is varied.
7-14
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POPULATION DYNAMICS OF INTERACTING SPIKING . . . PHYSICAL REVIEW E66, 051917 ~2002!
low-frequency part of the spectrum disappears for a pop
tion in a noise-dominated regime, since in this case the
genvalues ofL are purely real~see the discussion in Se
II F 2!.

We emphasize that the low-v peaks inP(v) are a quali-
tatively different consequence of the finite-N effects, with
respect to thev-independent termn0 /N, which simply
renormalizes the scale ofP(v), and would result from Pois

FIG. 5. Poles distribution for a recurrent inhibitory populatio
with different coupling strengths in noise-dominated regimes. D
monds: first four diffusion poles (sn

(d)); circles: first four transmis-
sion poles (sn

(t)). Shading as in Fig. 4. The mean population em
sion rate is kept atn054 Hz. All the states are stable. Diffusio
poles have a large spread in their imaginary parts, while the
parts of the two classes of poles still move in opposite directio
when F8 is varied. Despite the fact that the eigenvalues ofL are
real in noise-dominated regimes, the diffusion poles are comp
conjugates.

FIG. 6. Transient response to a step change in the external e
sion rate of a population of inhibitory neurons in a drift-dominat
regime: Simulations vs theory. Fort,0, the network is in an asyn
chronous stationary state with mean emission raten50.2 Hz. At t
50, an instantaneous increase of the rate of external neurons, t
after kept constant, drives the activity towards a new stable s
with n520 Hz. The solid black line is the mean of the activity fro
10 simulations of a coupled network~5000 inhibitory LIF neurons!.
The thick gray line is the theoretical prediction, obtained from
first four pairs of diffusion poles.
05191
a-
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son fluctuations ofm, as introduced in@9#. The new finite-N,
v-dependent part of the spectrum can overwhelm the pu
diffusive part~this is the case for the network in Fig. 7!. We
further note that this low-v part of the spectrum become
increasingly relevant if a distribution of delays is introduce
in fact, we checked~but do not show! that the high-
frequency part ofP(v) is more and more strongly dampe
as the distribution of delays becomes wider~see Sec. II F 2!.

Figure 8 shows the power spectrum of the collective
tivity for an inhibitory population in a noise-dominated re
gime. The eigenvalues ofL are in this case purely real, an
the power spectrum does not exhibit low-frequency pea
even if in principle one could have expected them, in co
nection with the diffusion poles shown in Fig. 5; this mea
that, at least in this case, the numerator only of Eq.~2.32!
determines the low-v peaks in the spectrum.

-

-
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x
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te

FIG. 7. Power spectrum of the activity of a population of inhib
tory neurons in a stationary, drift-dominated regime: Simulations
theory. The solid black line is the power spectrum from a 60-
simulation; the thick gray line is the theoretical prediction; t
dashed line is the power spectrum of the white noise with varia
n0 /N, beingn0520 Hz andN55000.

FIG. 8. Power spectrum of the activity of a population of inhib
tory neurons in a stationary, noise-dominated regime: Simulati
vs theory. The network parameters are the same as those o
white markers in Fig. 5. See Fig. 7 for details; in this casen0

54 Hz andN52000.
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MAURIZIO MATTIA AND PAOLO DEL GIUDICE PHYSICAL REVIEW E 66, 051917 ~2002!
Comparing Figs. 8 and 7, it is apparent that the lowv
part of the power spectrum of the simulated network is
excellent agreement with the theory in the case of the no
dominated regime, while a discrepancy arises for the d
dominated case~with respect to the width and height of th
peaks, while the resonant frequencies are still in good ag
ment!. The trough inP(v) for low v is reminiscent of the
effect of a refractory period on the power spectrum of
single neurons~see@10,41#!; even if we assumedt050, this
does not exclude an effective refractory period possibly
lated to the transport ofp(v) along the interval (H,u) in the
drift-dominated regime.

2. A network of excitatory neurons

Figures 9–11 illustrate the stability scenario, the char
teristic times of the transient response, and the power s
tral density for a population of interacting excitatory ne
rons. From Fig. 9, two main differences are apparent, w
respect to the inhibitory case.~i! The n1 now has the first
transmission pole on the real axis, which implies a differ
nature of the transition to instability, no longer of the Ho

FIG. 9. Poles distribution for a recurrent excitatory populatio
for different coupling strengths in drift-dominated regimes. D
monds: The first four diffusion poles (sn

(d)); circles: The first three
transmission poles (sn

(t)) ~poles are complex-conjugate pairs wi
the exception ofs0

(t) , which is real!. See text and Fig. 4 for details
The transmission poles are shifted by a frequency;1/2d (d
52 ms) with respect to the case of an inhibitory population. For
different coupling strengths, the external current is adjusted in o
to have the same stationary raten0520 Hz.
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type, but ‘‘explosive’’ in nature; now Imsn
(t)52pn/d. ~ii !

The transmission poles have a very different dependenc
the intensity of the interaction,F8: For a wide range of
values forF8 the characteristic times associated with t
transmission poles remain essentially constant. We rem
that the stability conditionF8<1 is verified.

Figure 11 displays the power spectrum for the excitat
network. It is worth noting that in this case the ‘‘diffusion
part of the spectrum dominates over the ‘‘transmission’’ pa
The positions of the peaks are the Imsn

(t) and Imln above.
Figure 10 further illustrates the characteristic times as

ciated with the diffusion and the transmission poles. O
distinctive feature of the excitatory case is the very stro
dependence of the longest time scale~associated withs1

(d)),
on F8; this point is further discussed in the following su
section.

,

e
er

FIG. 10. Response times for a recurrent excitatory popula
with different coupling strengths. The response times of the fi
four diffusion poles~left! and four transmission poles~right! are
plotted againstF8. The two types of poles have a different behavi
when the coupling strength~directly related toF8) is increased:
The response time due to the diffusion poles is shortened, while
opposite happens for the transmission poles~notice the different
scales!. See text for details.

FIG. 11. Power spectrum of the activity of a population
coupled excitatory neurons in a drift-dominated regime: Simu
tions vs theory. The white noise variancen0 /N is given by n0

520 Hz and N51000. The coupling strength is such thatF8
50.6.
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D. A possible effect of learning

Figure 12 shows the theoretical prediction for the tra
sient response of an interacting excitatory population wh
starting from a stable state of low emission rate~1 Hz in the
case shown!, undergoes a sudden jump in its external inp
which is then kept constant, making the global activity of t
network converge to a steady state of higher activity~20 Hz!.
For the same initial and final asymptotic average emiss
rate, we show in the figure how the value ofF8 affects the
transient response: higher values ofF8 entail quicker re-
sponse, and faster damping of the oscillations@42#. This is
consistent with the stated dependence of Resn

(d) on F8, and
the fact thatsn

(d) dominate the transient response.
For a given network architecture and neuron’s paramet

increasing values ofF8 imply stronger recurrent couplings
as we expect to be brought about by alearning process~for
example in a Hebbian learning scenario@43,44#!. This effect
could have deep functional implications, and we elabor
briefly on this point in Sec. IV.

The spectral analysis, shown in Fig. 13, illustrates ho
besides the transient response, the effects of synaptic po
tiation can be appreciated looking at the stationary activ
state. In particular, it is seen that the value ofF8 essentially
affects only the ‘‘diffusion’’ part of the spectrum, leaving th
‘‘transmission’’ part almost unchanged.

From Fig. 13 we also see that thev50 component is
much higher for the higher value ofF8. Since in general the
height of each component in the spectrum is determined
the real part of the corresponding pole, again we see he
manifestation of the increasingF8 bringing the network to-
wards the stability boundary: Thes0

(t) pole in fact, which
gives av50 contribution, is the one determining the stab
ity of the network, and its real part is a decreasing funct
of F8, as we discussed in relation to Fig. 9.

FIG. 12. Transient responses to a stepwise stimulation of
excitatory population, for two different coupling strengths. The n
work parameters are the same as two of the points in Figs. 9 an
The transient responses of a weakly coupled (F850.6, thin line!
and a strongly interacting (F850.95, thick line! network are
shown. Only the first four pairs of diffusion poles are used. T
stimulation is given by an instantaneous increase of the emis
rate of external neurons att50. The steady states of the populatio
before and after the stimulation are, respectively, 1 Hz and 20
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IV. DISCUSSION

The main purpose of the present work is to improve
some aspects of previous dynamical treatments of the po
lation activity of a network of interacting neurons.

We focused on the asynchronous collective neural sta
this is not unreasonable, in view of typical cortical cond
tions ~particularly taking into account the ability of neura
modules to quickly react to stimulation@15#!. On the other
hand, it would be desirable to extend the coverage of
dynamical scenarios offered here to other, globally station
and/or nonstationary regimes, in the spirit of the ‘‘phase d
grams’’ derived in@7,9,13#.

We expand a bit in the following on possible experimen
implications of the spectral analysis ofn(t), comment on the
mentioned ‘‘priming’’ effects related to synaptic modifica
tions, and finally list some open problems.

A. Power spectrum and network properties

The predictions of the theory presented here about
power spectrumP(v) of the collective activity, amenable in
principle to experimental investigation, relate to quantit
such as the~distribution of! delays~which could effectively
embody the effects of slow synaptic currents@9#!, or the
pattern of synaptic couplings. One obvious difficulty in es
mating theP(v) is that one should be able to get a reliab
estimate of the collective activityn(t). An experimental
measure of the characteristic times of the transient respo
of the network to abrupt variation in its inputs would provid
an independent clue about essential features of the po
spectrum~the diffusion poles!. While such a measuremen
seems presently unfeasiblein vivo, one can speculate on th
possibility to perform it in vitro. Specifically, one could
imagine performing a long series of stepwise stimulations
a small neural population in a slice~for example, using mul-

n
-
0.

e
on

z.

FIG. 13. Power spectrum of an excitatory population in a dr
dominated regime, for different coupling strengths. For the sa
network of Fig. 9, the power spectrum is shown for a wea
coupled (F850.6, thin line! and a strongly interacting (F8
50.95, thick line! network. The high-frequency part of the spe
trum stays essentially unaffected, while the ‘‘diffusive,’’ low
frequency part shows appreciable changes. The white noise s
trum ~dotted line! has variancen0 /N given by n0520 Hz andN
51000.
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tielectrode arrays!, recording each time the activity of a sma
number of neurons; the set of multiple recordings~aligned in
time! would provide an estimate of the transientn(t) ~such a
pooling strategy was explored in Refs.@2,45# in a simple
setting!. Measuring the transient response this way could
much easier than trying to estimate thestationarynetwork
activity.

On the other hand, especially in view of the characteri
tion of the spectral content of the neural activity recordedin
vivo, it is tempting to consider the role of finite-size noise
a network’s self-probing signal, such that the frequency
sponse of the collective activity is exposed even in the
sence of external stimulation tuned on purpose.

B. Priming effects induced by ‘‘learning’’

We saw in simple cases how the characteristic times
the network response depend on the slopeF8 of the popula-
tion gain function, and we mentioned that this can be view
as a possible effect of ‘‘learning,’’ as long as the latter
described as a sequence of synaptic modifications, affec
in turn m and s2. This is relevant in view of a scenario i
which, for example, a series of neuronal modules~say a pro-
cessing chain from ‘‘sensory’’ to deeper areas! propagate in-
formation along the chain, in such a way as to reflect
‘‘familiarity’’ or ‘‘novelty’’ of a stimulus ~a familiar stimulus
eliciting a quicker response!.

As a qualitative indication of the possible link betwe
successive stages of learning and the speed of the popul
response to external stimuli, we mention the results of R
@34#, in which in vivo recording in behaving monkeys pe
forming a delayed task showed a marked dependence o
latency of the response on the degree of ‘‘familiarity’’ of th
stimuli. Figure 2C of Ref.@34# shows clearly that the re
sponse to novel stimuli~to which to apply the already
learned task! drops after 200 trials to about 80% of its initia
value. Though compatible with several possible expla
tions, such experimental evidence is suggestive of a poss
direct implication of the average synaptic potentiati
brought about by learning.

We remark that if one adopts a generic first-order dyna
ics for the raten, ṅ5 f (n) ~see@5,6# for approaches of this
type!, given a fixed pointn0, such thatf (n0)50, with sta-
bility condition f 8(n0),0, it is easy to see that the relax
ation time ton0 is 21/f 8(n0), and the closer the system is
the stability boundary, the longer is the relaxation time. T
opposite emerges from the present analysis. Whatever
scale is plugged into the above naive dynamics, the s
gested relation with stability is misleading: coming close
the stability boundary in fact makes the network respo
faster, while the stability condition itself is determined b
poles whose typical characteristic times are much sho
and do not essentially affect the transient response.

C. Some open issues

On the theoretical side, some important features are m
ing in the class of models considered in this work, and m
the link with experimental findings still fleeting. One of the
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is the variety of noninstantaneous synaptic transmiss
mechanisms of the presynaptic action potentials. Actua
synaptic interactions are mediated by the diffusion of n
rotransmitters and the kinetics of post-synaptic recept
whose time constants and dynamics are quite well es
lished ~see, for instance, Ref.@46#!.

Indications about the role of synaptic currents were giv
in Refs.@5,6,15# for drift-dominated regimes.

In the mean-field framework, it has been suggested
synaptic time constants can be effectively considered
transmission delays: In Ref.@9#, the effects of the character
istic time scale of the~inhibitory! synaptic current have bee
illustrated through a study of the network’s state space.

Incorporating the effect of noninstantaneous synaptic c
rents has recently been the subject of several other effort
Ref. @38#, following the approach pioneered in Ref.@5#, a
population density approach for the evolution of thep(v,t)
is complemented by a dynamic equation for the average~in-
hibitory! synaptic conductance~a mean-field treatment of th
synaptic transmission!. In Ref. @47#, the population density
approach is further extended to take into account both e
tatory and inhibitory synaptic contributions, and the effe
of their fluctuations, developing an effective dimensional
duction of the otherwise high-dimensional Fokker-Plan
equation. Reference@48# addresses the noise-filtering pro
erties of the IF neuron’s output in connection with no
negligible ~but small! synaptic time scales, and shows th
finite synaptic times bring about quicker neuron response
transient changes in its input.

Much is still to be done in this respect, to characterize
behavior of the coupled network in different~especially
noise-dominated! regimes. As part of work in progress, w
plan to extend the approach described in the present pap
perturbatively take into account noninstantaneous syna
currents@49#.

The formalism illustrated in the present paper can in pr
ciple be applied to the widely used leaky IF neuron mod
Such application would be interesting in several respects
would provide a characterization of the phenomenology
the ‘‘default’’ model for biologically motivated modeling
making it easier to compare and contrast previous resu
Besides, we formulated in the present paper some con
tures ~such as the fact that the eigenvalues of the Fokk
Planck operator are purely real in noise-dominated regim!;
it would be interesting to check their validity for the leaky I
neuron model.

Extending the treatment to the leaky IF neuron implie
technical complication, essentially due to the fact that
eigenvalues and eigenfunctions of the Fokker-Planck op
tor can only be expressed in terms of special functions~para-
bolic cylinder functions!.
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